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Overview

What is unmeasured confounding?
I Ignorable treatment assignment: an untestable assumption
I Representations of unmeasured confounding

Example 1: binary treatment, binary outcome, no covariates
I Defining average treatment effect
I Bounds on treatment effect estimate
I Sensitivity to unmeasured confounding

Example 2: binary treatment, continuous outcome, covariates
I Estimate ATE using G computation algorithm
I Sensitivity to unmeasured confounding

Summary & comparison of methods
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Why is unmeasured confounding important?

Important source of uncertainty in observational studies

Sensitivity to assumptions is related to quality of evidence

PCORI recommendations for reporting
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Problems posed by unmeasured confounding

In observational studies, existence of unmeasured confounding can lead to biased
estimates of causal effect

However it is not possible to test the ‘no unmeasured confounding’ null hypothesis.

Important questions about unmeasured confounding as they relate to drawing inference
and reporting results about causal effects:

How should it be represented?

How to assess effects on bias and uncertainty?
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Some (simple) notation
We use the potential outcomes framework

Y0 = outcome if treatment not received

Y1 = outcome if treatment received

The observed data for an individual are (A,Y ,XXX )

A =

{
1 if treatment received
0 if not

Y =

{
Y1 if A = 1
Y0 if A = 0

XXX = measured covariates

Average treatment effect (ATE)

E (Y1 − Y0)
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What do we mean by unmeasured confounder?

First, need to define ignorable treatment assignment:

Treatment assignment is ignorable if there exists a subset XXX ∗ ⊆ XXX such that

Y0⊥⊥A |XXX ∗ and Y1⊥⊥A |XXX ∗

For purposes of this talk, this is the same as ‘no unmeasured confounders’.

Means that treatment is randomized within levels of XXX ∗

If this condition does not hold, there is unmeasured confounding
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Representations of unmeasured confounding

Added variable representation

There exists an unmeasured confounder U

Formulate model of its relationship to outcome and treatment assignment

Potential outcomes representation

The unmeasured confounder is the unobserved potential outcome

Specify distribution of unobserved potential outcome, conditional on observed data
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Potential outcome representation

In potential outcome representation, the unmeasured confounder is the the
unobserved potential outcome

Y1−A

Sensitivity analyses therefore based on comparing its distribution to that of the
observed potential outcomes, e.g.,

P(Y0 |A = 0) vs P(Y0 |A = 1)

Focus here: estimation of means
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Breaking down ATE

Proportion receiving treatment: p = Pr(A = 1)

The ATE is a difference of weighted averages

E (Y1 − Y0) = E (Y1)− E (Y0)

E (Y1) = pE (Y1 |A = 1) + (1− p)E (Y1 |A = 0)

E (Y0) = pE (Y0 |A = 1) + (1− p)E (Y0 |A = 0)

What can be estimated from data?
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Breaking down ATE

First note that because Y = Y1 when A = 1, can write

E (Y1 |A = 1) = E (Y |A = 1)

Likewise

E (Y0 |A = 0) = E (Y |A = 0)

What this means:
I We can estimate E (Y0 |A = 0) using the sample mean of Y among A = 0

I We can estimate E (Y1 |A = 1) using the sample mean of Y among A = 1
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Example 1: Clofibrate trial
Coronary Drug Project Research Group, NEJM 1980
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Example 1: Clofibrate trial
Coronary Drug Project Research Group, NEJM 1980
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Example 1: Clofibrate trial
Coronary Drug Project Research Group, NEJM 1980

Consider treatment arm only

Y = 1 if died before 5 years

= 0 if not

A = 1 if ≥80% compliant with clofibrate

= 0 if not

Objective: estimate causal effect of complying with treatment
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Example 1: Clofibrate trial

Proportion compliant: p̂ = 708/1065 = .67

Mortality proportion by compliance status

Ê (Y |A)

A = 1 106/708 = .15

A = 0 88/357 = .25
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Example 1: Clofibrate trial

Observed data:

Ê (Y1 |A) Ê (Y0 |A)
A = 1 .15 *
A = 0 ** .25

Average treatment effect

ATE = Ê (Y1)− Ê (Y0)

= (.67)(.15) + (1− .67)(∗∗)− {(.67)(∗) + (1− .67)(.25)}

Point estimates
I Under ITA: −.10
I Lower bound: −.65
I Upper bound: .35
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Example 1: Clofibrate trial

Observed data:

Ê (Y1 |A) Ê (Y0 |A)
A = 1 .15 .25
A = 0 .15 .25

Average treatment effect

ATE = Ê (Y1)− Ê (Y0)

= (.67)(.15) + (1− .67)(.15)− {(.67)(.25) + (1− .67)(.25)}

Point estimates
I Under ITA: –.10
I Lower bound: −.65
I Upper bound: .35
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Example: Clofibrate trial

Observed data:

Ê (Y1 |A) Ê (Y0 |A)
A = 1 .15 1
A = 0 0 .25

Average treatment effect

ATE = Ê (Y1)− Ê (Y0)

= (.67)(.15) + (1− .67)(0)− {(.67)(1) + (1− .67)(.25)}

Point estimates
I Under ITA: −.10
I Lower bound: –.65
I Upper bound: .35
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Example: Clofibrate trial

Observed data:

Ê (Y1 |A) Ê (Y0 |A)
A = 1 .15 0
A = 0 1 .25

Average treatment effect

ATE = Ê (Y1)− Ê (Y0)

= (.67)(.15) + (1− .67)(1)− {(.67)(0) + (1− .67)(.25)}

Point estimates
I Under ITA: −.10
I Lower bound: −.65
I Upper bound: .35
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Summary: Bounds

No point estimates!

Conveys lack of information in observed data

Implicitly gives equal weight to all values within the interval

Does not rely on any assumptions about unmeasured confounding

Does not use covariate information

In principle works for binary outcome, binary treatment

Not plausible for continuous outcomes

Hogan (Brown U SPH) Sensitivity Analysis CIMPOD, February 2016 19 / 52



Sensitivity Analysis

What does it mean to do sensitivity analysis?

‘Unmeasured confounding’ is a phenomenon that cannot be observed

Sensitivity analysis
I Make assumptions about things you can’t see

I Vary those assumptions to see how analysis changes
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Sensitivity Analysis
Define two sensitivity parameters:

δ0 = E (Y0 |A = 1)− E (Y0 |A = 0)

δ1 = E (Y1 |A = 1)− E (Y1 |A = 0)

Interpretation: Compliance, captured by A, is a behavioral characteristic.

δ0 = difference in mortality rate between compliers and non-compliers,

under scenario that none received treatment

δ1 = difference in mortality rate between compliers and non-compliers,

under scenario that all received treatment

Example
If compliers have lower mortality, even in the absence of treatment, then δ0 < 0.
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A Simple Sensitivity Analysis for the Clofibrate Trial

Rearrange to represent quantities that cannot be estimated in terms of those that can
be estimated:

In terms of the Clofibrate trial:

δ0 = E (Y0 |A = 1) − .25

δ1 = .15 − E (Y1 |A = 0)
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A Simple Sensitivity Analysis for the Clofibrate Trial

Rearrange terms:

E (Y0 |A = 1) = .25 + δ0

E (Y1 |A = 0) = .15− δ1

Ignorable treatment assignment (no unmeasured confounding):

δ0 = δ1 = 0

Introduce unmeasured confounding:

Suppose those who take treatment (A = 1) tend to have lower mortality

Then want to vary δ1 < 0 and δ0 < 0
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Example sensitivity analysis (partial)

δ0 δ1 Interpretation Tx effect

0 0 ITA –.10 (–.14, –.05)

–.10 0
mortality 10%

lower among compliers,
in absence of treatment

–.03 (–.08, .02)

0 –.05
mortality 5%

lower among compliers,
in presence of treatment

–.08 (–.13, –.03)

–.10 –.05 –.01 (–.06, .04)
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Summary of sensitivity analysis

Possible unmeasured confounder: compliers engage in other healthy behaviors

This unmeasured confounder may explain observed treatment effect

Tipping point that changes point estimate to zero: see graph
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Next example: Continuous outcome with observed confounders
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Example 2: HER Study

Epidemiologic study of HIV in women, 1993-99

Want to examine effect of antiviral therapy initiation on CD4 count six months later

Potential confounders: observed covariates at time of treatment decision

Antiviral Therapy

A = 0 A = 1

(n = 246) (n = 111)

Outcome CD4 at 6 months 278 289

Covariates Baseline log VL 3.4 3.3

Baseline symptoms .59 .68

Baseline CD4 271 250
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.

A X1 X2 X3 Y Y0 Y1

---------------------------------

[92,] 0 0 181 3.13 145 145 .

[93,] 0 2 385 3.14 236 236 .

[94,] 0 0 396 3.15 610 610 .

[119,] 0 0 247 3.49 252 252 .

[120,] 0 0 455 3.53 495 495 .

[121,] 0 0 268 3.54 328 328 .

[122,] 0 1 93 3.55 63 63 .

[162,] 0 0 40 3.91 40 40 .

[163,] 0 0 191 3.92 209 209 .

[164,] 0 0 337 3.93 173 173 .

[165,] 0 1 6 3.94 6 6 .

[7,] 1 2 176 1.70 236 . 236

[8,] 1 0 484 1.70 504 . 504

[34,] 1 1 156 2.78 162 . 162

[35,] 1 2 130 2.84 44 . 44

[105,] 1 3 67 4.87 70 . 70

[106,] 1 0 174 4.96 288 . 288

[107,] 1 0 117 5.13 212 . 212
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Causal inference via G-computation algorithm

1 Fit regression [Y1 |X ,A = 1]

2 Fit regression [Y0 |X ,A = 0]

3 Use these to generate prediction of Y1,Y0 for whole sample

4 Estimated ATE is difference of averages

ÂTE = (1/n)
n∑

i=1

Ŷ1i − Ŷ0i
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A Y0.hat Y1.hat diff

---------------------------------

[92,] 0 201.78 213.47 11.69

[93,] 0 383.58 432.41 48.83

[94,] 0 408.14 431.82 23.68

[119,] 0 257.47 282.24 24.77

[120,] 0 458.12 494.80 36.68

[121,] 0 276.66 303.86 27.20

[122,] 0 100.62 131.78 31.16

[162,] 0 49.07 73.93 24.86

[163,] 0 195.22 228.35 33.13

[164,] 0 335.97 377.06 41.09

[165,] 0 8.72 45.44 36.72

[7,] 1 210.20 209.91 -0.29

[8,] 1 522.32 512.37 -9.95

[34,] 1 176.73 190.85 14.12

[35,] 1 143.26 170.58 27.32

[105,] 1 34.21 124.55 90.34

[106,] 1 157.70 217.14 59.44

[107,] 1 99.40 160.50 61.10
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Causal inference via G-computation algorithm

Inference about ATE

Est. s.e.

Unadjusted 9.7 18.7

Adjusted (GCA) 30.4 11.4
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Representing unmeasured confounding

With no unmeasured confounding, potential outcome means equal across treatment
groups

E (Y1 |A = 1,xxx)− E (Y1 |A = 0,xxx) = 0

E (Y0 |A = 1,xxx)− E (Y0 |A = 0,xxx) = 0

Can represent unmeasured confounding as differences in potential outcome means

η1 = E (Y1 |A = 1,xxx)− E (Y1 |A = 0,xxx)

η0 = E (Y0 |A = 1,xxx)− E (Y0 |A = 0,xxx)

These can also depend on XXX
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Representing unmeasured confounding

Also relates to treatment effect

η1 − η0 = E (Y1 − Y0 |A = 1,xxx)− E (Y1 − Y0 |A = 0,xxx)

Examples:

Confounding by indication: those receiving treatment are less healthy

η0 < 0 and η1 < 0

Treatment prescribed preferentially to those who will benefit more

η1 > η0
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Implementation
Can show that this amounts to adjusting imputed values as follows

For those with A = 0

Ŷ1i(η1) = Ŷ1i − η1

For those with A = 1

Ŷ0i(η0) = Ŷ0i + η0

When the sensitivity parameters do not depend on xxx ,

ATE(η0, η1) = ATE(0, 0)− {η1P(A = 0) + η0P(A = 1)}

= ATE(0, 0)− unmeasured confounding bias
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How to select values for η0,η1

Recall that η’s are differences in conditional means

η1 = E (Y1 |A = 1,xxx)− E (Y1 |A = 0,xxx)

η0 = E (Y0 |A = 1,xxx)− E (Y0 |A = 0,xxx)

Simple measurement scale: residual SD from observed-data regressions

η1 = λ1σ1

η0 = λ0σ0

where the σ’s are residual SD

Our approach: Use single value of λ

η1 = λσ1

η0 = λσ0
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Illustration using HERS Data

Objectives

Show how methods implemented

Compare representations of
I Robustness of findings
I Changes in degree of sensitivity when new variable are added

Interpret results in context
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Illustration using HERS Data

Analysis 1: Adjust for these confounders

baseline log viral load

baseline HIV symptom level (1 to 10)

Analysis 2: Adjust for the same confounders, plus

baseline CD4 count
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Analysis via potential outcomes method

Table of residual SD

Confounders adjusted for σ0 σ1
Base Sympt, Base VL 152 161
Base Sympt, Base VL, Base CD4 90 102

Example: If λ = −.1, then

η0 = E (Y0 |A = 1,xxx)− E (Y0 |A = 0,xxx) = (−.1)(90) = −9

Implies ‘confounding by indication’

If left untreated, CD4 would be lower for those who actually received treatment

This difference applies within groups having same values of measured confounders

Hogan (Brown U SPH) Sensitivity Analysis CIMPOD, February 2016 39 / 52



−0.2 −0.1 0.0 0.1 0.2

−
40

−
20

0
20

40
60

lambda

C
au

sa
l E

ffe
ct

 E
st

im
at

e

Adjust for Base Symp + Base VL
Adjust for Base Symp + Base VL + Base CD4



−0.2 −0.1 0.0 0.1 0.2

−
40

−
20

0
20

40
60

lambda

C
au

sa
l E

ffe
ct

 E
st

im
at

e

Adjust for Base Symp + Base VL
Adjust for Base Symp + Base VL + Base CD4



−0.2 −0.1 0.0 0.1 0.2

−
20

0
20

40
60

80
10

0
Tipping Point

lambda

C
au

sa
l E

ffe
ct

 E
st

im
at

e



Potential outcomes analysis: Robustness

Estimated ATE under no unmeasured confounding

ÂTE(0, 0) = 30.4 (8.2, 52.8)

Confidence interval will include 0 when λ ≥ 0.1:

η1 = E (Y1 |A = 1,XXX )− E (Y1 |A = 0,XXX ) = (.1)(102) = 10.2

η0 = E (Y0 |A = 1,XXX )− E (Y0 |A = 0,XXX ) = (.1)(90) = 9.0

i.e., when unmeasured confounding implies those selected to receive treatment would,
on average, have better outcomes than those not selected, within groups having the
same XXX values.
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Summary and conclusions

Compared two methods for assessing effect of unmeasured confounding

Bounds

I Convey lack of information

I No assumptions about unmeasured confounding

I Gives ranges that are usually too large to be helpful

I Cannot use with continuous outcomes

Hogan (Brown U SPH) Sensitivity Analysis CIMPOD, February 2016 44 / 52



Summary and conclusions

Sensitivity analysis based on differences in potential outcomes

I Unmeasured confounding = differences in potential outcome means

I Allows use of covariates

I We illustrated with GCA, but can use with other methods

I Allows transparent assessment of robustness
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How to do inference using G-computation algorithm
Step 1: Fit a model for E (Y1 |X1,X2,X3)

Can do this with regression of Y on XXX among A = 1

E (Y |X1,X2,X3,A = 1) = β0 + β1X1 + β2X2 + β3X3

Call:

glm(formula = Y ~ V, subset = (A == 1))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.73174 44.00156 0.198 0.843

V1 5.51940 9.18138 0.601 0.549

V2 1.01917 0.07724 13.195 <2e-16 ***

V3 6.33678 9.75998 0.649 0.518

> sigma.1

[1] 102.1384
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How to do inference using G-computation algorithm

Step 2: Use this model to generate predicted values of Y1, including for those with
A = 0

Ŷ1i = β̂0 + β̂1X1i + β̂2X2i + β̂3X3i
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A X1 X2 X3 Y Y0 Y1 Y0.hat Y1.hat

---------------------------------------------

[92,] 0 0 181 3.13 145 145 . 213.47

[93,] 0 2 385 3.14 236 236 . 432.41

[94,] 0 0 396 3.15 610 610 . 431.82

[119,] 0 0 247 3.49 252 252 . 282.24

[120,] 0 0 455 3.53 495 495 . 494.80

[121,] 0 0 268 3.54 328 328 . 303.86

[122,] 0 1 93 3.55 63 63 . 131.78

[162,] 0 0 40 3.91 40 40 . 73.93

[163,] 0 0 191 3.92 209 209 . 228.35

[164,] 0 0 337 3.93 173 173 . 377.06

[165,] 0 1 6 3.94 6 6 . 45.44
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A X1 X2 X3 Y Y0 Y1 Y1.hat

---------------------------------------------

[92,] 0 0 181 3.13 145 145 . 213.47

[93,] 0 2 385 3.14 236 236 . 432.41

[94,] 0 0 396 3.15 610 610 . 431.82

[119,] 0 0 247 3.49 252 252 . 282.24

[120,] 0 0 455 3.53 495 495 . 494.80

[121,] 0 0 268 3.54 328 328 . 303.86

[122,] 0 1 93 3.55 63 63 . 131.78

[162,] 0 0 40 3.91 40 40 . 73.93

[163,] 0 0 191 3.92 209 209 . 228.35

[164,] 0 0 337 3.93 173 173 . 377.06

[165,] 0 1 6 3.94 6 6 . 45.44

[7,] 1 2 176 1.70 236 . 236 209.91

[8,] 1 0 484 1.70 504 . 504 512.37

[34,] 1 1 156 2.78 162 . 162 190.85

[35,] 1 2 130 2.84 44 . 44 170.58

[105,] 1 3 67 4.87 70 . 70 124.55

[106,] 1 0 174 4.96 288 . 288 217.14

[107,] 1 0 117 5.13 212 . 212 160.50
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How to do inference using G-computation algorithm

Step 3: Repeat this process for Y0

Call:

glm(formula = Y ~ V, subset = (A == 0))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 89.0177 27.4414 3.244 0.00135 **

V1 -7.4478 6.1926 -1.203 0.23027

V2 0.9663 0.0456 21.190 < 2e-16 ***

V3 -20.0045 6.0580 -3.302 0.00110 **

---

> sigma.0

[1] 90.25616
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A Y0 Y1 Y0.hat Y1.hat

---------------------------------

[92,] 0 145 . 201.78 213.47

[93,] 0 236 . 383.58 432.41

[94,] 0 610 . 408.14 431.82

[119,] 0 252 . 257.47 282.24

[120,] 0 495 . 458.12 494.80

[121,] 0 328 . 276.66 303.86

[122,] 0 63 . 100.62 131.78

[162,] 0 40 . 49.07 73.93

[163,] 0 209 . 195.22 228.35

[164,] 0 173 . 335.97 377.06

[165,] 0 6 . 8.72 45.44

[7,] 1 . 236 210.20 209.91

[8,] 1 . 504 522.32 512.37

[34,] 1 . 162 176.73 190.85

[35,] 1 . 44 143.26 170.58

[105,] 1 . 70 34.21 124.55

[106,] 1 . 288 157.70 217.14

[107,] 1 . 212 99.40 160.50
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A Y0.hat Y1.hat

---------------------------------

[92,] 0 201.78 213.47

[93,] 0 383.58 432.41

[94,] 0 408.14 431.82

[119,] 0 257.47 282.24

[120,] 0 458.12 494.80

[121,] 0 276.66 303.86

[122,] 0 100.62 131.78

[162,] 0 49.07 73.93

[163,] 0 195.22 228.35

[164,] 0 335.97 377.06

[165,] 0 8.72 45.44

[7,] 1 210.20 209.91

[8,] 1 522.32 512.37

[34,] 1 176.73 190.85

[35,] 1 143.26 170.58

[105,] 1 34.21 124.55

[106,] 1 157.70 217.14

[107,] 1 99.40 160.50
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