Structural Nested Models and g-estimation

Dylan Small

Acknowledgement: Slides draw from materials from Department of Statistics, University of Pennsylvania Marshall Joffe

Time-varying treatments : Example

- burden of blood sugar) measured by hemoglobin A1C (measures long term Observational study for treatment of high blood sugar,
- Outcome of interest is Y = A1C at end of second time period
- Treatments:
- A_1 = Treatment in first time period, A_2 = Treatment in first time period
- Post-baseline covariate:
- $L_2 = III$ at beginning of second time period
- associated with higher blood sugar Illness at beginning of second time period
- decreases blood sugar in A1C by 10 units True effect: Treatment in each time period

Structural Nested Models

 $Y_i^{a_1,a_2}$ =outcome person i would experience if she were to receive treatment level a_1 in first period, a_2 in second period.

Structural Nested Model:

$$Y^{a_1,a_2} = Y^{0,0} + \Psi(a_1 + a_2)$$

 $\Psi=$ effect of one unit of treatment on final outcome

treatment to differ by time period, e.g., (Could consider alternative models that allow for effect of

$$Y^{a_1,a_2} = Y^{0,0} + \Psi_1 a_1 + \Psi_2 a_2$$

Hypothetical data: potential outcomes $y^{o_0 o}$

right circumference points: comparable groups

effect of each increment of treatment: lower A1c by 10 (see next panel)

Observed data Y^{A₁,A₂}

g-estimation of Structural Nested Models

Structural Nested Model:

$$Y^{a_1,a_2} = Y^{0,0} + \Psi(a_1 + a_2)$$

 $\Psi=$ effect of one unit of treatment on final outcome

g-estimation

Compute putative potential outcome if the true effect is $\,\Psi\,$.

$$Y^{0,0}(\Psi) = Y - (A_1 + A_2)\Psi$$

where Y, A_1, A_2 are observed outcome and treatments.

Key assumption:

previous treatment history and covariates up to that point. Sequential ignorability (sequential effective randomization): Treatment at each time point effectively randomized given

and covariates up to that point treatment at each time point given previous treatment history Under sequential ignorability, $Y^{0,0}(\Psi)$ is independent of

g-estimation: Test this independence using logistic regression or estimating equations

Reference:

Robins, J.M. et al. (1992), G-estimation of the effect of prophylaxis therapy for pneumocystic carinii pneunmonia on the survival of AIDS patients, *Epidemiology*, 3, 319-36.

for $\Psi = 0$, test independence of A_2 , $Y^{00}(\Psi)$ (Compare 130 vs, 140, etc.)

also test independence of A_1 , $Y^{00}(\Psi)$:

$$(130*8+140*2+80*20+90*20)/50 = 94.4$$

VS.

$$(110*20+120*20+60*2 +70*8)/50=105.6$$

(Reject)

for $\Psi = -10$, test independence of A_1 , $Y^{00}(\Psi)$

(150*8+150*2+100*20+100*20)/50=110

VS.

(120*20+120*20+70*2 +70*8) /50= 110

(Fail to reject)

model/g-estimation with standard Comparison of structural nested

regression approaches will be biased for

estimating joint effects of treatments when (A1) there exists a time-dependent risk factor for or

 – (A2) past treatment history predicts subsequent risk factor subsequent treatment predictor of the event of interest that also predicts

and (A2) under sequential ignorability. Other methods g-estimation provides unbiased estimates under (A1) probability weighting structural models with associated method of inverse with associated method of g computation; (ii) marginal which can provide unbiased estimates are (i) g formula

standard approaches

$$E(Y|A_1) = 105.6 - 11.2A_1$$

attenuated as measure of overall effect

 $E(Y|A_1,A_2,L_2)=70+20A_1-10A_2+50L_2$ $E(Y|A_1+A_2,L_2)=78.59873+2.42038(A_1+A_2)+37.96178L_2$ $E(Y|A_2,L_2)=84.28571-6.10390A_2+37.53247L_2$ $E(Y|A_1,L_2)=68+17A_1+47L_2$ $E(Y|A_1,A_2)=105.71429-11.16883A_1-0.25974A_2$ $E(Y|A_2) = 100.8 - 1.6A_2$ $E(Y|A_1+A_2)=105.71429-5.71429(A_1+A_2)$

The only correct estimate is effect of A_2 when controlling for A_1L_2

can estimate component effect of last bit of treatment expected under sequentially ignorable treatment assignment

cannot estimate joint effects of treatments received at different times

marginal structural models and g-Comparison of g-estimation with

- Comparison of g-estimation to marginal structural models: computation
- treatment with very high variance with reasonable variance, while MSM tries to estimate overall average g-estimation estimates average treatment effect in region of overlap almost everybody takes treatment or almost everybody takes control), When there is a lack of overlap (for some covariate combinations,
- Structural nested models with g-estimation can be used to accommodate failure of sequential ignorability through use of instrumental variables and other methods.
- Comparison of g-estimation to g-computation
- Structural nested model with g-estimation directly models the effect of treatment on the outcome in a parsimonious way.
- causal/software/. and STATA macros available at http://www.hsph.harvard.edu/ Disadvantage of g-estimation: Lack of off the shelf software. SAS

the partially realized promise. Statistical Science, 29, 707-731. Reference: Vansteelandt, S. and Joffe, M. (2014) Structural nested models and g-estimation:

Structural Nested Failure Time Model (SNFTM)

- SNFTM: Structural nested model for a failure time outcome.
- SNFTM can correct for immortal time bias and healthy worker survivor effect

Oscar Winners Live Longer?

From Science, May 25, 2001

Katharine Hepburn celebrated her 94th birthday this do with it: month, and her four Oscars may have something to

According to a study published in the 15 May issue of winners live longer than other successful actors. the Annals of Internal Medicine, Academy Award

Analysis in the Annals of Internal Medicine Paper

Main analysis:

- Considered all actors and actresses who have been nominated for an Oscar (Academy Award).
- Classified an actor or actress who won an award at other actors/actresses as nonwinners (controls). some point in his/her lifetime as a winner and all
- Fit Cox proportional hazards model to find effect of winning on mortality rate.

Survival in Winners vs. Non-winners (Kaplan-Meier curves)

Cox proportional hazards model: The reduction in mortality rate associated with winning was estimated to be 25% with a 95% CI of 5%-41%.

Immortal Time Bias

- their first nomination. The nonwinning nominees can die anytime after
- is "immortal time." between the winners' first nomination and first win The winners cannot die until they win. The time
- Example:
- Henry Fonda was first nominated in 1941 for his role in "The Grapes of Wrath." Fonda won his first Oscar for his role in "On Golden Pond" in 1981.
- James Stephenson was first nominated in 1940 for his role in "The Letter" and did not win. Stephenson died in 1941

Healthy Worker Survivor Bias

Winning is an indication of health:

After the first nomination, winning an award at a later time is an indication that the worker was health at that later time.

Structural Nested Failure Time Model

- Treatments are win or not win in each year.
- Among nominees in a given year, test (using age and previous nomination history. without winning conditional on actor/actress' independent of potential survival time logistic regression) whether winning is

Results

- There is suggestive but inconclusive evidence (p=0.07) that winning has an effect on lifetime
- multiplies lifetime by a factor of (0.99, 1.27). We obtain a 95% confidence interval that winning
- To translate this into lifetime, we estimated the given treatment effect: median lifetime for winners compared to their median putative lifetime if they did not win under a
- 95% confidence interval for effect of winning on median lifetime: (-0.4 years, 8.4 years).

structural accelerated failure time model. Annals of Applied Statistics, 5, 746-772 award on survival: correcting for healthy performer survivor bias with a rank preserving Reference: Han, X., Small, D., Foster, D. and Patel, V. (2011). The effect of winning an Oscar

Summary

- g-estimation are an approach to modeling the joint Structural nested models and the associated method of effects of a sequence of treatments or exposures
- subsequent treatment and (A2) past treatment history predictor of the event of interest that also predicts there exists a time-dependent risk factor for or Standard regression approaches are biased when (A1) predicts subsequent risk factor level.
- Structural nested models with g-estimation provide treatment is sequentially ignorable. time varying covariates have been collected so that unbiased estimates under (A1) and (A2) when enough