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Two clinical trials

Encouragement for flu vaccine Intervene to encourage doctors to give flu shots to
senior citizens. Does this reduce hospitalization?

Exercise for smoking cessation Intervene to promote vigorous exercise during smoking
cessation period. Does this increase quit rates?
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Causal effects and randomization

Basic set up in terms of data

Z = Randomization to treatment arm

A = Compliance or receipt of assigned treatment

Y = Outcome

X = Baseline covariates

Which causal effects can be estimated?
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Defining causal effects

Randomization

Z = 1 if randomized to treatment, 0 if placebo

For each individual, can define potential outcomes

Y1 = outcome if Z = 1

Y0 = outcome if Z = 0

Causal effect of Z on Y is

Y1 − Y0

Average causal effect of Z on Y is

θ = E (Y1 − Y0)
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Estimating causal effects

Key issue is that we only observe one potential outcome

Y =

{
Y1, if Z = 1
Y0, if Z = 0

If Z is randomized, then

E (Y1) = E (Y | Z = 1)

E (Y0) = E (Y | Z = 0)

Hence E (Y1 − Y0) can be estimated using difference in sample means

Y Z=1 − Y Z=0
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What about causal effect of A on Y ?

Depends on what you are willing to assume.

If everyone has some probability of receiving A, then can use structural modeling
and inverse weighting to estimate average effect of A.

If there are some who would not take A, this is an important stratification of the
population. Need to focus on causal effect of A within certain subpopulations.
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Complier-average causal effect

Causal effect of Z on Y among those who take the treatment prescribed by Z .
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Principal stratification

Stratum Proportion A0 A1 E (Y1 − Y0 | A1,A0)

Never takers πNT 0 0 θNT

Compliers πC 0 1 θC

Defiers πD 1 0 θD

Always takers πAT 1 1 θAT

CACE = E (Y1 − Y0 | A1 = 1,A0 = 0) = θC

IT effect =
∑

S∈{NT,C,D,AT}

θSπS
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Relating observed to latent data

Z A (A0,A1) Stratum

0 0 (0,0) or (0,1) NT or C

0 1 (1,1) or (1,0) AT or D

1 0 (0,0) or (1,0) NT or D

1 1 (0,1) or (1,1) C or AT
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Complier-average causal effect

CACE is:

Causal effect of being randomized to treatment, among those who took assigned
treatment

Randomized comparison between those who do and do not receive treatment

Potential problems with CACE

Causal effect only applies to a subgroup

The subgroup cannot be identified

Untestable assumptions needed to estimate CACE from data
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Estimation of CACE

To estimate CACE from data

Need to impose untestable assumptions

Sometimes, inference must be expressed in terms of bounds or
sensitivity analysis

Main types of assumptions

Randomization

Monotonicity

Exclusion restrictions
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Assumption: Randomization

Randomization

Z ⊥⊥ {Y0,Y1,A0,A1}

Treatment is randomly allocated, thereby balancing individual characteristics.

Enables valid estimate of causal effect of Z on Y and Z on A:

Ê (Y1 − Y0) = Y Z=1 − Y Z=0

Ê (A1 − A0) = AZ=1 − AZ=0
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Assumption: Monotonicity

Monotonicity

A1 ≥ A0

Individuals are at least as likely to receive treatment when randomized to Z = 1, as
compared to Z = 0.

This assumption rules out the possibility of ‘defiers’

Makes it possible to estimate proportion in each principal stratum
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Assumption: Exclusion restrictions

Exclusion restrictions

E (Y1 − Y0 | A0 = A1) = 0

Equivalently

θAT = 0

θNT = 0

Randomization only affects outcome via receipt of treatment

Put another way: there is no direct effect of the randomization Z
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Effect of Exclusion Restrictions, Monotonicity

Assumptions constrain strata probabilities and causal effects

Stratum Proportion A0 A1 E (Y1 − Y0 | A1,A0)

Never takers πNT 0 0 0

Compliers πC 0 1 θC

Defiers 0 1 0 θD

Always takers πAT 1 1 0

Can therefore show

πC = AZ=1 − AZ=0

πAT = P(A = 1 | Z = 0)

πNT = P(A = 0 | Z = 1)
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Instrumental variables estimator of CACE

When these assumptions hold, the IV estimator is a consistent estimator of CACE,
treating Z as the IV

Key assumptions for an IV:

Correlated with receipt of treatment
Uncorrelated with potential outcomes (randomizer)

The IV estimator is

θ̂C =
Y Z=1 − Y Z=0

AZ=1 − AZ=0

=
IT effect of Z on Y

πC
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Other representations of the IV estimator

It is a ratio of covariances

θ̂C =
cov(Y ,Z )

cov(A,Z )

Using a heuristic version of the chain rule, can also think of it as dY /dA in a causal
metric,

θ̂C =
dY /dZ

dA/dZ
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Encouragement Designs and Flu Vaccine

Hirano, Imbens, Rubin and Zhou. Biostatistics 2000; 1:69–88.

Z = Physician receipt of letter to encourage flu shot

A = Patient decides to receive flu shot

Y = Hospitalization

X = Baseline covariates
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Summary Statistics
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Summary Statistics
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Summary Statistics
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Flu shot example

Monotonicity: There are no individuals who would receive the flu shot with no
encouragement, and refuse it if encouraged.

Probably plausible.

Exclusion restrictions: Can be placed on AT, NT, or both.

In practical terms: encouragement has no effect on those who will
always refuse/choose (NT/AT) to receive the shot.
Possibly not plausible – encouragement may come with other advice
about avoiding flu. May therefore have direct effect on hospitalization.
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Principal strata membership probabilities
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Causal treatment effects
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Causal treatment effects
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Causal treatment effects
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Conclusions

ITT effect may overstate causal effect of vaccine

Reason: there may be a direct effect of the intervention (letter) among always- or
never-takers

I Always takers are probably at higher risk for hospitalization. Hence letter may
hasten timing of the shot, or lead to other preventive measures

I For never takers, probably ok to use exclusion restriction

Exclusion restrictions do reduce uncertainty – should be imposed with care
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Example 2: Commit to Quit Study
Roy, Hogan, Marcus, 2008 Biostatistics

Intervention study on effect of supervised exercise on smoking cessation

Key feature of this example: two active treatments

Question that can be answered by PS: What is the effect of an intervention among
those who would accept it if offered?

Compare to this question: What is the effect of an intervention if it was accepted
by everyone?
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Motivation

Smoking prevalence rates among women were declining at a slower rate than among
men

Fear of weight gain is a motivator for continued smoking

This is especially true among female smokers
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Participants

Sedentary women aged 18 to 65 who are regular smokers

281 subjects agreed to participate

147 in wellness arm, 134 in exercise arm

Smoking status and treatment compliance recorded each week
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Control group intervention

Cognitive-behavioral therapy augmented by wellness education program

Cognitive-behavioral smoking cessation therapy (CBT)

12-session, group-based smoking cessation program

This is standard therapy.

Wellness education program

3 supervised health education lectures each week
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Exercise group intervention

Cognitive-behavioral therapy augmented by exercise program

Cognitive-behavioral smoking cessation therapy (CBT)

12-session, group-based smoking cessation program

Vigorous exercise program

3 supervised exercise sessions per week
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Data

Z = randomization to exercise (1) or wellness (0)

X = baseline covariates

A = compliance indicator (1 if yes, 0 if no)

Y = smoking cessation (1 if yes, 0 if no)
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Basic principal strata

S A0 A1 description

0 0 0 non-compliant with either treatment

1 1 0 only compliant with standard treatment

2 0 1 only compliant with new treatment

3 1 1 compliant with either treatment
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Strata membership

Given Z and A, only two possible values of S

Z A S

0 0 0 or 2

1 0 0 or 1

0 1 1 or 3

1 1 2 or 3
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Assumptions

Randomization

Z ⊥⊥ {Y0,Y1,A0,A1}
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Assumptions

Treatment access restriction

Subjects in group Z = z do not have access to the active treatment assigned in arm
Z = 1− z , for z = 0, 1.
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Assumptions

Monotonicity

P(A1 = 1 | A0 = 1) ≥ P(A1 = 1 | A0 = 0)

Those who would comply with ‘wellness’ are more likely to also comply with ‘exercise’,
when compared to those who would not comply with ‘wellness’
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Assumptions

Exclusion Restriction

E (Y1 − Y0 | A0 = 0,A1 = 0) = 0

There is no causal effect of being randomized to treatment among those who would
comply with neither intervention.
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Targets of inference

E(Y1 − Y0) =E(Y1 − Y0|S ∈ {0, 1, 2, 3})
I This is the usual ITT effect
I Average response if everyone were randomized to new treatment minus the average

response if everyone were randomized to standard treatment.

E(Y1 − Y0|S = 3)

I Causal effect of assignment among subpopulation of compliers
I Average causal effect comparing new treatment to standard treatment among

compliers

E(Y1 − Y0|S ∈ {2, 3})

I Causal effect of assignment among subpopulation that would comply with new
treatment
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What’s different about this example: Use covariates

If S were observed, estimating the principal effects would be easy.

Given Z and A for a subject, S can only take on two possible values.

Use covariates to help identify which of these two strata the subject is in.

If we have good predictors of compliance, class membership will be nearly identified
for some subjects (i.e., class probability near 1)

Essentially, weight responses by class probabilities to estimate class-specific means.
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Use covariates to determine stratum membership

In order to identify the principal strata, we need to identify [A0,A1|X ].

Strategy:

Specify marginal model [A0|X ]

Specify marginal model [A1|X ]

Specify an association model [A1|A0,X ] that is compatible with the two marginal
models

The association model is indexed by a dependence parameter φ that cannot be
identified by data
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Interpretation of φ

If φ = 0, then have conditional independence
I conditional independence A0 ⊥⊥ A1|X

If φ = 1, then strongly dependent
I Strongest degree of dependence that is still compatible with marginal distributions
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Definition of compliance and the outcome

Compliance

A = 1 if attended ≥ 2 sessions every week and 3 sessions at least 2 of the weeks,
during the pre-quit day period

Outcome:

Y = 1 if continually abstinent

Pre-quit day period Post-quit day period

compliance defined outcome defined

1        2        3       4       5        6        7       8 9       10      11     12

week
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Covariates

Baseline covariates that were available included

age, gender, race/ethnicity, education

weight, body fat percentage, BMI

Number of previous quit attempts, number of cigarettes per day, fagerstrom score
(levels measure of dependence)
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Models for stratum membership

Logistic regression model for P(A0 = 1|X ) = P(A = 1|Z = 0,X ):

X included age, employed, married, married*employed, HS education and
some college

Logistic regression model for P(A1 = 1|X ) = P(A = 1|Z = 1,X ):

X included HS education and some college

Fix value of φ to capture dependence between A0 and A1
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Estimated strata probabilities as function of φ
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Complier-average causal effect (CACE)
Effect of exercise vs wellness, among those who would accept either.
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Compare to ITT effect estimate

This captures effect of being offered exercise vs being offered wellness.

The posterior median and 95% credible interval for the E(Y1 − Y0):

0.085 (0.002, 0.170).
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Impact of covariates

We fitted models with and without covariates, and compared the posterior distributions.

In general, the model without covariates had wider posterior distributions.

Covariates essentially reduced the range of plausible values that the causal
parameters can take over the range of φ

See plot
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Cessation rate for compliers on wellness arm

(with and without covariates)

0.0 0.2 0.4 0.6 0.8 1.00.0 0.2 0.4 0.6 0.8 1.0

no covariates

covariates

Joseph Hogan (Brown U) Principal Stratification and IV February 2016 52 / 56



Cessation rate for compliers on exercise arm

(with and without covariates)
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CACE with and without covariates
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Conclusions

Subjects randomized to CBT+exercise were more likely to quit.

Among highly compliant subjects, exercise appeared to be beneficial.

43% complied with exercise

Only 15-35% of subjects would have complied with both interventions.

College graduates more likely to comply with exercise program.

In simulation study and the analysis, demonstrated benefits from including
covariates in the model.
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Summary points

CACE should be viewed in a larger context of principal stratification.

It estimates causal effect among a subgroup of compliers

PS can be used to estimate causal effect within other subgroups

PS has been used to address the mediator problem ... relevance less clear

Assumptions – these are critical and must be thought through carefully in context

If using standard software, carefully evaluate assumptions
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